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ABSTRACT 

An improved understanding of equilibrium and non-equilibrium properties of plasmas 

is central to many areas of basic science as well as to the development and optimal uti- 

lization of plasmas in various technologies. This involves the study of the large variety of 

phenomena which take place when neutral, partially ionized atoms and electrons interact 

strongly with external fields and with each other in a plasma. It includes also the problem 

of creation and maintenance, with as efficient power use as possible, an extended plasma 

in the atmosphere such as is envisioned in the air plasma ramparts project. 

We plan to continue our broad program of theoretical research in plasma physics 

based on the general principles of statistical mechanics and kinetic theory. These princi- 

ples relate, via Gibbs ensembles and Boltzmann type equations, macroscopic phenomena 

of interest to the laws governing the microscopic constituents of matter. This includes dy- 

namic phenomena such as the creation, maintenance and stability of nonequilibrium states, 

the absorption and emission of radiation, as well as fluctuations and phase transitions in 

equilibrium plasmas. We will be particularly interested in problems related to the physics 

and chemistry of air plasma ramparts. 

Our work involves both rigorous mathematical analysis to find exact results whenever 

possible and suitable theoretical approximations for practical problems too difficult to 

analyze rigorously. Computer simulations also play an important role in our work, serving 

as a guide to theoretical developments and as a check on approximations. 



I. Objective 

An improved understanding of equilibrium and non-equilibrium properties of plasmas 

is central to many areas of basic science as well as to the development and optimal uti- 

lization of plasmas in various technologies. This involves the study of the large variety of 

phenomena which take place when neutral, partially ionized atoms and electrons interact 

strongly with external fields and with each other in a plasma. It includes also the problem 

of creation and maintenance, with as efficient power use as possible, an extended plasma 

in the atmosphere such as is envisioned in the air plasma ramparts project. 

We plan to continue our broad program of theoretical research in plasma physics 

based on the general principles of statistical mechanics and kinetic theory. These princi- 

ples relate, via Gibbs ensembles and Boltzmann type equations, macroscopic phenomena 

of interest to the laws governing the microscopic constituents of matter. This includes dy- 

namic phenomena such as the creation, maintenance and stability of nonequilibrium states, 

the absorption and emission of radiation, as well as fluctuations and phase transitions in 

equilibrium plasmas. We will be particularly interested in problems related to the physics 

and chemistry of air plasma ramparts. 

Our work involves both rigorous mathematical analysis to find exact results whenever 

possible and suitable theoretical approximations for practical problems too difficult to 

analyze rigorously. Computer simulations also play an important role in our work, serving 

as a guide to theoretical developments and as a check on approximations. 

II. Background and Approach 

Statistical mechanics of equilibrium and non-equilibrium phenomena in general and 

of plasmas in particular aims at the coherent understanding of collective behavior of elec- 

trons, ions, and atoms, in as wide variety of physical situations as possible. To achieve 

this aim it couples the dynamics, specifying the basic rules governing the time evolution 

of the microscopic entities making up macroscopic matter, with statistical ideas taking 

into account the enormous number of atoms contributing to macroscopic behavior. The 

dynamical laws as well as the relevant statistics are governed by quantum mechanics al- 

though in many cases classical mechanics, which is generally easier to deal with, gives 

a very good approximation. This is however not always the case and many important 

problems in plasma physics involve quantum mechanics in essential ways. These include 

the ionization and recombination of atoms and molecules subject to external fields. Here 

we want to know how the transition between levels is affected by variations in the applied 

fields. This may also depend on how the level structure of isolated atoms or molecules 

is changed by the interactions with other particles in the system. These interactions can 

have large effects leading to the modification of some levels and possibly introducing new 



kinds of metastable states. They are clearly relevant for many applications including the 

design of air plasma ramparts. 

The actual behavior of the plasma, once it is established and maintained, can be stud- 

ied for the most part by means of classical statistical mechanics. We are then led in many 

cases to the derivation and solution of appropriate Boltzmann type equations for the po- 

sition and velocity distribution functions of particles undergoing both elastic and inelastic 

collisions. An important question which we have been studying is the nature and stability 

of solution of such kinetic equations in time dependent as well as stationary nonequilibrium 

situations. During the past few years we have succeeded in proving rigorously the existence 

of nonequilibrium phase transitions in weakly ionized plasmas subjected to external fields 

as well as to obtain rigorous bounds on the transport coefficients of such systems. 

Due to the complexity of these problems it is often crucial to reduce the kinetic equa- 

tions to more manageable hydrodynamic type equations involving only spatial coordinates 

and time. Examples include the (magneto) hydrodynamic equations used to describe the 

time evolution of spatially inhomogeneous (plasmas) fluids. We have achieved some success 

in obtaining such hydrodynamic equations rigorously from kinetic equations in appropriate 

scaling limits. 

There are also situations in which it is more appropriate to bypass kinetic theory 

and use directly approaches based on general principles of statistical mechanics. Thus 

a plasma interacting with a laser field which is described, to a good approximation, by 

the Zakharov or the non-linear Schrodinger equations, has been studied by us successfully 

using the Gibbs ensemble approach. Similarly vortex motion in two dimensional fluids and 

magnetized plasmas can be studied via the equilibrium ensemble approach of Onsager. We 

are currently in the process investigating an apparently novel phase transition predicted 

by this theory and comparing it with experiments. 

This work is part of our program for developing a general statistical mechanical theory 

for systems far from equilibrium. To achieve this goal and obtain a truly microscopic 

theory of phase transitions in nonequilibrium systems we have been studying also other 

representative examples of such phenomena. These are the microscopic structure of shocks 

and the kinetics of phase segregation. We have been able to obtain exact results for the 

former in some model systems. We have also derived, for the first time, exact macroscopic 

equations describing phase segregation in systems with long range interactions. 

We hope that our work will answer questions such as the existence of suitable nonequi- 

librium free energy functionals, the validity of the fluctuation dissipation theorem and 

Onsager relations for the "pseudo" transport coefficients in a plasma in a more precise 

and useful way than is currently possible. The present approaches work either through 

analogies with equilibrium or through ad hoc prescriptions such as "minimum energy dis- 

sipation", "maximum entropy production", or "maximum likelihood" principles.   These 



"principles" seek in some ways to avoid the difficult task of solving the dynamic problem 

but it is not clear at present under what conditions they are valid and/or useful. 

In summary we propose to continue and expand our statistical mechanical investiga- 

tions on properties of interacting particle systems, with the aim of increasing understanding 

of the phenomena occurring in partially and fully ionized plasmas. Applications related to 

the creation and maintenance of air plasmas will be of particular concern. In what follows 

we give an outline of some projects we are pursuing and plan to carry out in the future. 

^Research 

A. Energy Growth and Ionization in Driven Atomic Systems 

We are interested in studying methods of dissociation and ionization of molecules 

present in, or easily added to the atmosphere. The objective is the creation and main- 

tenance of a plasma in the air with minimum power expenditure. Our approach will use 

methods developed in the study of the phenomena of energy growth and other instabilities 

occuring in driven quantum systems. For the problem at hand these would correspond to 

going from a bound state to an ionized one. It has in fact been shown recently, using ideas 

developed in our previous work, that one could use this approach to obtain very efficient 

dissociation of certain molecules. (96% dissociation of a model HF molecule by a chirped 

infrared laser pulse of 2.3 ps duration and I03w/cm3 intensity.) 

A natural framework for the study of typical behavior of systems subjected to general 

time dependent fields, which includes periodic and almost periodic fields as special cases, 

is to write the Hamiltonian in the form 

H(t) = H0{x) + V{xitt) (1) 

Here x stands for the internal dynamical variables of the system and (< 6 fl is a time 

dependent "external" classical variable, corresponding to the trajectory of a classical dy- 

namical system on a domain ft, having an invariant ergodic measure \i. One considers 

then typical or averaged behavior with respect to /z. 

a) The Time-Periodic Case 

The case of time-periodic external force, which in this language corresponds to ft 

being a circle with £t = £ + wt, and dpi = d£/27ru;, has been studied most extensively 

both for classical and quantum systems. The stability problem can then be expressed 

in terms of the properties of the Floquet operator U(t + T,t) which gives the evolution 

of the system over one period T — 2-K/W. U is a unitary operator on the Hubert space 

Ti of the unperturbed system. The long time behavior of the system and its stability 

can be expressed in terms of the spectral properties of the Floquet operator. The energy 

remains bounded if the spectrum is pure point, and it grows unbounded if the spectrum 

is continuous. In our work we have obtained conditions under which these may occur. 



b) General Time Dependence 

A generalization of the Floquet theory connecting spectral and stability properties is 

not yet completely developed. Some progress has however been made. Let U^(t, s) be the 

propagator of the system described by the Hamiltonian (1) when £ is a state of the classical 

dynamical system (fi,£t>/*) in which the evolution £t is generated by an invertible flow 

6 = 9(t)t 

We then have 

Uz(t + a,s + a) = Ug(a)t(t,s)]     aGR 

One considers then, in analogy with the periodic case, the enlarged space 

K = H®L2(n,dn) 

and the one-parameter family of operators W(t) acting on ^(x,^) 6 /C 

[W(t)V)(x,t) = Ut(0,-t)y(x,g(-t)t). 

W(t) is a strongly continuous family of unitary operators and thus can be represented as 

W{t) = e~iKt 

The self-adjoint generator K is the generalized quasi-energy operator. It acts as 

We haye.*been able to show that under appropriate conditions there is a correspondence 

between stability and the spectral properties of the generalized quasi-energy operator. 

c) Dissociation by Chirped Laser Pulses 

The use of chirped (or frequency-swept) laser pulses opens new possibilities of control 

in atomic and molecular physics. The essential tool is quasi-energy diagrams as a function 

of the laser amplitude and an effective frequency. The choice of the chirping evolution is 

guided by the analysis of the structure of the avoided crossing in the quasi-energy diagram. 

The method was successfully applied to the complete dissociation of a diatomic molecule 

.by an ultrashort infrared chirped laser pulse. The total Hamiltonian acting on the Hilbert 

space 7i = L2(K,dx) is 

H(t) = H{9 + u{t)t) = H0- qxa(t) sin(0 + v(t)t), 

The system is initially in its ground state <po and the objective is to achieve complete 

transitions to an excited state <pi, which could be an ionized state by chirping. The first 



essential point, phase (i), is to use a laser with a non-resonant frequency u>; with respect to 

the ground state and the lower excited states, to avoid any crossing or avoided crossing in 

the quasi-energy diagram at zero field amplitude. This has the consequence that the initial 

population stays adiabatically completely concentrated in the single Floquet state \Pa, 

which is continuously connected to the ground state. In phase (ii), the frequency decreases 

from uj{ as described by a time dependent function co(t). The Floquet Hamiltonian takes 

the form 

K^»°»\6) = H(e)-if*:eff(i)-. (2) 

with the effective frequency u;e//(t) = u)(i) +dit, which is the relevant one for the analysis 

of the quasi-energy diagram. As u>e// decreases from u>i to u>e//(f/), $a goes through 

an avoided crossing with ^5. If the time dependence in ueff(t)is sufficiently slow, the 

Schrödinger evolution follows the instantaneous eigenvalue branch by continuity. This 

means that after the avoided crossing, the population that was originally in the state 

\?Q is in the instantaneous Floquet state ^j,. Phase (iii) is then used to reconnect the 

Floquet branches to the unperturbed states after the avoided crossing. ^t is now finked 

by continuity to tpx and *&a to (/Jo- 

in order to achieve a complete transition from <po to <p\, one needs a sufficiently 

slow pulse in order that all the population follows the Floquet states adiabatically during 

the increasing and decreasing phases of the pulse, and a sufficiently slow variation of the 

chirping u>e//(£) near the avoided crossing. One thus designs a coeff(t) that is adapted to 

the location of the avoided crossings, and from it, one can easily deduce the chirping which 

needs to be implemented from Eq. (2). 

B. Transport Processes in Plasmas 

1. Bounds on the Mobility of Electrons in Weakly Ionized Plasmas 

The behavior of the electron mobility in a gas composed of several species is a subject 

of continued experimental and theoretical investigations. Of particular interest is the fact 

that the addition of certain types of scatterers, i.e. neutral species, to the gas increases the 

electron mobility and therefore the electron current in an applied electric field. This effect 

is potentially of practical utility and can be used to obtain information about scattering 

cross sections and level structure of different species. 

The fact that the mobility can actually increase with the addition of scatterers is at 

first surprising: it is contrary to the well known Matthiessen rule in metals which states 

that the total resistivity due to different types of scatterers is the sum of resistivities due 

to each of them. A closer inspection shows that Matthiessen's rule applies only to weak 

fields while the observations and analysis in gases are in the nonlinear high field regime. 

This still leaves open the question of the validity of approximations commonly made 

in calculating the current of weakly ionized plasmas in strong fields. We therefore inves- 



tigated rigorously the stationary solutions of the kinetic equation for the electron velocity 

distribution function in cases where the electron-neutral (e-n) collisions are purely elastic 

and their cross section is modeled by a simple power dependence on the electron speed. 

In particular we established two-sided bounds for the electron mean energy and drift in 

the presence of an external electric field. These bounds show that the results obtained for 

the current and energy of the electrons in the usual approximation, which neglects higher 

order terms in a Legendre polynomial expansion and gives the Druyvesteyn-like distribu- 

tion for large fields, are qualitatively right and even provide good quantitative answers. 

In fact they are sufficiently precise to confirm an increase in the current for large (but 

not for small) fields upon addition of some gases, provided the mass of the added species 

is smaller than that of the dominant one, e.g. adding Helium to an Xenon gas, and the 

different cross sections satisfy certain conditions. We plan to extend our analysis to i) 

improve the accuracy of the bounds on electron mobility and energy; ii) include more real- 

istic elastic cross sections and inelastic collisions; these are most important in practice for 

enhancement of the electron mobility; iii) take into account the recombination processes 

which play a significant role for dense/cold plasmas. 

2. The Reflection of Electromagnetic Waves by a Conducting Surface 

Shielded with a Plasma Layer 

The propagation of a monochromatic plane wave with frequency LO and electric vector 

amplitude E{x) in the half-space x > 0 with a conducting surface at x = 0 was considered. 

The incident wave comes along the a:-axis from x = oo, where it has wavenumber fco, and 

travels through a plasma with a fixed density n(x), n[x) —• 0 as x —• oo. We are interested 

in the strength of the reflected wave for normal incidence. 

Assuming the ionized layer to be much thicker than the Debye length,- the problem 

was solved for two models: 

1) The plasma density produces an exponentially decaying conductivity <r(x) with 

the fixed real part of its dielectric constant the same as in vacuum. Such conductivity 

dependence corresponds to an exponential decrease of the plasma density n(x) which could 

be a consequence of the plasma recombination obeying the linear low 

^Z?-<"<*) = ° (1) 

where D = const is the diffusion coefficient and ( presents the rate of recombination. 

The exponential model of plasma density allows an analytical solution, and it is therefore 

often used in studying the propagation of electromagnetic waves in the atmosphere. It 

is connected with the Chapman law in the ionosphere. A solvable version of this law, 

introduced by Epstein and treated in a more general context by Vidmar for the exploration 

of reflecting and transmitting properties of artificial plasma layers.   While we do not 



believe in the practical accessibility of exponential plasma profiles for the problem at hand, 

we study it for the better understanding of more practical plasma density distributions, 

including the final results of our calculation on the second model. 

2) An approximately realistic description of a plasma layer generated near a metallic 

surface is considered. The plasma decay is assumed to be governed by the dissociative 

recombination of electrons with positive molecular ions. This is presumably the dominant 

process for cold weakly ionized plasmas. Since the incident wave is assumed weak enough 

for all processes to be linear, the plasma spatial profile may be determined first and then 

the reflection problem solved. 

We plan to extend this work to more general cases. In particular, consider a plane wave 

incident on a medium whose dielectric and magnetic functions vary only in one direction, 

say z. The amplitudes of the electric field and magnetic field of the wave are then governed 

by a set of differential equations which can be written in a form 

?± + K*(z)i, = 0. (2) 

A popular numerical scheme for solving (2) is the partition of the inhomogeneous 

medium into thin layers (j=l,2,3,...) perpendicular to the z-axis, where the magnetic and 

dielectric functions are assumed constant and therefore Kj = const. 

This method is not very effective numerically because it converges only linearly in 

terms of the layer thickness, or iV_1. When the plasma is strongly inhomogeneous one 

needs a large N for an accurate modeling of K(z), and this is not only time consuming but 

also restricts the best possible accuracy due to accumulation of computation errors. The 

slow convergence of the scheme is caused by the sharp changes of K(z) at the boundaries 

between adjacent layers. 

Modeling of K(z) by a continuous function can be expected to give a much better 

output. We therefore propose to approximate K(z) in each layer j by Kj(z) = aj{bj-\-z)~l. 

This will give 

^ = Ajibj + z)it + Bj{bj + zfT, (3) 

with 7j obtained from the equation 7j(7j — 1) + a2- = 0. The two free parameters, aj,bj 

allow us to have continuity of K(z). Preliminary computer experiments show a tremendous 

advantage of this calculation method over the traditional one both in speed and accuracy. 

We also note that in the generation phase of the plasma, the determination of the 

dielectric properties are much more complicated than in the stationary state of the plasma 

due to the strong inhomogeneities in this regime. A technique which may be useful here 

is homogenization, whose main purpose is to speed up significantly the computation of 

the transport properties by replacing a very complicated local problem with an effective 

nonlocal problem that gives the same overall results. 

8 



C. Phase Transitions and Instabilities 

Introduction 

The understanding of equilibrium phenomena, including their most interesting aspect, 

that of phase transitions, has enormously advanced in the past few decades. The elegant 

and precise theory of Gibbs measures provides a direct bridge between the microscopic and 

macroscopic descriptions of such systems. This includes a general conceptual framework 

as well as nontrivial explicit examples of the coexistence of multiple equilibrium phases 

for certain values of the macroscopic control parameters. In our earlier work supported 

by the AFOSR we have made considerable progress on the extension and development of 

equilibrium statistical mechanics of plasmas, although much remains to be done on phase 

transitions in charged systems—a problem we plan to investigate in the coming years. 

Our understanding of nonequilibrium phenomena is far less advanced. In particular 

there is no general microscopic theory of nonequilibrium phase transitions. Our mathe- 

matical understanding of the great variety of nonequilibrium phase transitions observed 

in fluids, plasmas, lasers, etc., therefore depends mainly on the study of bifurcations and 

other singular phenomena occurring in the solutions of the nonlinear equations describ- 

ing the macroscopic time evolution of such systems. One of the objectives of our work is 

therefore to develop a more microscopic theory of such phenomena. This program has met 

with a certain amount of success in recent years. 

1. Phase Transitions in a Spatially Uniform Weakly Ionized Plasma 

Instabilities are ubiquitous in strongly ionized plasmas. They dominate the behavior 

of such systems and their study forms the core of the subject. The origin of the instabilities 

lies in the nature of the plasma interactions: on the one hand they are long range and thus 

can produce strong cooperative effects and on the other hand they become 'weaker' locally 

at high energies (or temperatures) as manifested by the decrease of the Coulomb cross 

section with energy rise. The situation is different in weakly ionized cold plasmas, systems 

which have attracted much attention recently. In such systems, collective phenomena 

play a smaller role and instabilities are less common. Nevertheless there are cooperative 

phenomena in these systems too, which can lead to dramatic abrupt changes in the state 

of the plasma, e.g. nonequilibrium phase transitions, when such systems are driven by 

external fields, 

In recent years we succeeded in obtaining a rigorous mathematical proof of a phase 

transition for such a weakly ionized plasma. Our set up is as follows: We consider a 

weakly ionized gas in the presence of an externally imposed constant electric field E. The 

density of the gas, the degree of ionization and the strength of the field are assumed to be 

such that: (i) the interactions between the electrons can be described by some nonlinear, 

Boltzmann type collision operator, and (ii) collisions between the electrons and the heavy 

components of the plasma, ions and neutrals, are adequately described by assuming the 

9 



latter ones to have a spatially homogeneous time independent Maxwellian distribution with 

an a priori given temperature. Under these conditions the time evolution of the spatially 

homogeneous velocity distribution function f(v,t) will satisfy a Boltzmann type equation 

W?A = -E-Vf + Lf + e-iQ(f), (1) 

where V is the gradient with respect to v, E is a constant force field and Q is a nonlinear 

collision term. 

We proved that there exist multiple stationary distributions f(v) which are solutions of 

the non-linear kinetic equation (1). These occur in the vicinity of any one of the stable fixed 

points on the hysteresis loop obtained from the solution of a pair of nonlinear equations 

for the hydrodynamical variables; current and temperature. We showed furthermore when 

the system is started near such a stable hydrodynamic state it will remain there forever. If, 

on the contrary, it is started near the unstable fixed point, it will leave the neighborhood 

after some finite time. 

To put the above results in context we note that while there has been much progress 

recently in deriving hydrodynamic equations from simple microscopic and even realistic 

mesoscopic model evolutions the passage to the macroscopic scale is well understood only 

over time intervals in which the solutions of the macroscopic equations stay smooth. The 

reason for this is that control of the error terms in the estimates depends on a-priori 

smoothness estimates for solutions of the macroscopic equations. Thus, they shed no light 

on the actual behavior of the mesoscopic description when the solutions of the hydrody- 

namical equations develop singular behavior. 

To overcome this problem it is clearly desirable to develop methods in which one does 

not use any a-priori smoothness estimates for solutions of the macroscopic equations, but 

instead uses scale independent estimates on the kinetic equation. This is what we did for 

the model of a plasma in an external field described by (1) where we proved that kinetic 

description closely tracks the macroscopic one even when the driving is sufficiently strong 

for the latter to undergo phase transitions. More precisely, we showed that the velocity 

distribution function is close to a Maxwellian parametrized by a temperature T and mean 

velocity u which satisfy certain non-linear equations, which are the macroscopic equations 

for this system. Moreover, it does so globally in time, even when the stationary solutions 

of these macroscopic equations are nonunique. 

To show the stability of of these multiple stationary solutions we need results that 

guarantee that a solution of the kinetic equations will stay near a solution of the macro- 

scopic equations globally in time. This seems to be difficult to accomplish by standard 

expansion methods, at least in the range of driving field strengths where the macroscopic 

equations have the most interesting behavior. Instead of expansion methods, we used en- 

tropy production to show that the solution of the kinetic equations must stay close to some 

10 



Maxwellian, globally in time. Then, we showed that the moments of this Maxwellian must 

nearly satisfy the macroscopic equations. In this way we got our results. 

In the coming period we plan to extend these results to more realistic situations. 

Partial progress in this direction for a nonuniform plasma are described in the next section. 

2. Phase Transition in a Cylindrical Plasma 

We have partially extended our investigations of phase transitions in weakly ionized 

plasmas to more realistic experimental conditions than the spatially homogeneous weakly 

ionized plasma considered earlier. 

We consider an experimental arrangement consisting of a weakly ionized gas in a tube 

of radius R subjected to a constant external axial electric field E. The plasma is assumed 

for simplicity to be produced through uniform ionization inside the tube, by some external 

source, at a constant rate a. It is balanced by two kinds of recombination processes: a 

bulk one and a surface process on the tube wall. The main bulk recombination for the 

regime we are interested in, are three body processes involving two electrons plus an ion, 

and dissociative recombinations in which a metastable atom-ion complex recombines with 

an electron. The rates depend on the temperatures and densities of the electrons, ions and 

neutrals in a rather complicated way. For the sake of simplicity we lump the two processes 

together and assume an effective rate of bulk recombination proportional to T~3'2, where 

T is the electron temperature. We ignore the dependence of this rate on the neutral and ion 

temperature and on the pressure that we keep more or less constant. The recombination 

at the wall is also treated phenomenologically. In particular we assume that the energy is 

absorbed by the wall that is kept at a fixed temperature. 

We have in mind here a situation in which the great majority of neutral atoms are 

some kind of noble gas to which may, or may not, be added a small amount of a more easily 

ionized second species, though we realize that in the latter case the analysis would be more 

complicated. This will be reflected mainly in the rates of ionization a and recombination 

7 since we shall always consider a regime in which the density of electrons n(r,t) is much 

lower than that of the neutrals, N, but big enough, due to the great disparity between the 

electron mass, m, and the ion-neutral mass, M, for binary electron-electron collisions to 

dominate the energy exchanges in electron-ion and electron-neutral (e-i and e-n) collisions. 

This requires that 
<xm    ,.     2 n 

o   „,   AkTf « — «1. (2a) 

Here k is the Boltzmann constant, and cr is the total electron-neutral particle collision 

cross section, which is taken to be a constant in our work. Putting in appropriate values 

for the parameters on the left side of (2a) gives 

1 » n/N » 8 • 10~T, 4 • 10-8, 1.5 • 10-8 (26) 

11 



for He, Ne, Ar plasmas respectively, when kT is approximately 1 eV and it decreases as 

T2 for colder electrons. The upper bound relates to the fact that we ignore any collective 

self-induced electrostatic or magnetic interactions. 

The ions in our model are assumed to have a uniform temperature, Tj, the same as the 

neutrals, while their density is n(r,t), i.e., the plasma is treated as locally quasi-neutral. We 

assume axial symmetry and longitudinal homogeneity so the spatial dependence is only in 

the radial variable r < R. The different mobilities of ions and electrons are compensated 

by an internally generated radial ambipolar electric field F(r, t). We are thinking of a 

quiescent, long positive column which fills the tube. 

The reason for considering external rather than field-induced ionization is that the 

transition in the electron distribution between regimes of weak and strong coupling to the 

ions as we vary the external field E found in our previous work requires a low electron 

temperature and relatively weak electric field, which seems hard to achieve when the 

ionization is produced by the field. 

The basic idea is again to consider situations in which the collisions between electrons 

are strong enough to force their velocity distribution f(r,v,t) to stay close to a Maxwellian 

with temperature T and drift velocity w. The values of T and w, which are simply 

related to the first two velocity moments of /, are then determined by self consistent 

"hydrodynamic" equations, i.e. we evaluate the integrals entering the time evolution of T 

and w with the help of replacing / by this Maxwellian. For the spatially homogeneous case 

this yields ordinary differential equations in time for T and w that can be reduced to a 

couple of transcendental equations for stationary values T(E) and w(E) yielding, in some 

cases, S-shaped curves as functions of E — |E|. In the inhomogeneous situation we obtain 

nonlinear partial differential equations for n(r, t), T{r, t), w(r, t) and the radial electric field 

(or the plasma ambipolar field). Their stationary solutions again exhibit regions where the 

system is unstable. The physical situations where this transition might be observed is a 

much more restrictive domain than that given by (2), it requires essentially n/N ~ 10~4 

while N ~ 1015cro~3 for light noble gases when Ti is close to room temperature. At the 

transition the electron temperature jumps within a range of several Ti, staying significantly 

lower than the usual temperatures in self-sustaining gas discharges. This determines the 

experimental setup required to see this instability. 

3. Transitions between Shear and Vortex Flows in Statistical Hydrodynamics 

The motion of N point vortices embedded in a two-dimensional incompressible inviscid 

fluid is governed by the Hamiltonian dynamics C{Ti = J • ViH^ ', where C{ is the circulation 

and Ti = (xi,yi) G A C R2 the position of the i-th vortex, J is the symplectic matrix, and 

fl"'' the point vortex Hamiltonian, given by 

H^\vu...,rN)=     Y,     WjG{*i,tj)+   E   C"F^) (3) 
l<i<j<N 1<»<N 
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F(v) = lim 1 
r-+r Z 

G(f,r) + i-m|f-r| (4) 

In (3), G is a Green's function for —A on A. Its precise form depends on the geometry 

and topology of A and, if A has a boundary dA, on the boundary conditions. In a pio- 

neering paper, Onsager pointed out the potential significance of the statistical equilibrium 

distribution 8(H^N^ — E) of (3) for two-dimensional fluid flows. Onsager's theory yields 

a distinguished class of stationary incompressible Euler flows in the limit N —• oo in a 

fixed domain A. with energy scaled so that e = E/N2 is fixed. This limit was constructed 

recently by us using a Gaussian ensemble. The flows satisfy a set of nonlinear equations 

derived previously via a mean-field approximation to 6(H^ ' — E). This theory has been 

remarkably successful in reproducing in a quantitative way the almost stationary vorticity 

structures at intermediate times of a high Reynolds number Navier-Stokes simulation on a 

doubly periodic lattice. Here, "intermediate times" means time that are long compared to 

an eddy turnover time and short compared to the overall viscous decay time. The success 

of mean-field theory in this particular situation suggests it be evaluated in a systematic 

way, looking for new interesting predictions like phase transitions, and comparing it with 

further simulation results. 

In work in progress we carry out such an analysis for various realizations of the mean- 

field model equations in rectangular domains which are frequently employed in numerical 

simulations. A systematic evaluation has so far been carried out for one-species systems in 

all space, and in circular domains. In circular domains a phase transition has been found. 

It has been qualitatively associated with the observable phenomenon of the diocotron mode 

in the electron guiding center plasma, whose dynamics approximates vortex flows. 

We have also studied neutral systems on doubly periodic lattices. We find several 

phase transitions between different vortex flows and shear flows, depending on the aspect 

ratio of the lattice. We also treat various systems on periodic strips. Here too we find 

a phase transition between shear and vortex flows. These results qualitatively reproduce 

various numerical simulations. 

13 



4. Instabilities in Plasmas Interacting with Lasers 

The difficulties encountered in constructing statistical mechanical theories of nonequi- 

librium systems are associated with their potentiality for various kinds of instabilities. 

This is indeed the case for plasmas irradiated with laser light. Here the collective modes 

represent Langmuir waves and the instability is the soliton or caviton collapse which gives 

rise to plasma turbulence. The physics of the problem—including the reasons for expect- 

ing an equilibrium treatment of the collective modes to be of any relevance, even though 

the system is clearly not in thermodynamic equilibrium—are described by the Zakharov 

model, which contains the ion acoustic waves in addition to Langmuir waves. 

In earlier work we investigated the statistical mechanics of a simplified version of this 

system, i.e. complex field whose dynamics are governed by the non-linear Schrödinger 

equation. The Hamiltonian is unbounded below and the system will, under certain condi- 

tions, develop (self-focusing) singularities in a finite time. We showed that, under certain 

conditions, the Gibbs measure is absolutely continuous with respect to Wiener measure 

and normalizable if and only if classical solutions exists for all time — no collapse of the 

solitons. We have also investigated a mean field type Gaussian ensemble which furnishes 

a good approximation to this measure over a wide range of parameters. These works have 

had quite a wide impact and various extensions of them have recently appeared in the lit- 

erature. We plan to continue this work in several directions, rigorous and computational. 

Computations have played an essential role in this work, both in determining the 

properties of the true ensemble via Monte Carlo simulations and in solving the fixed point 

problem arising in the Gaussian approximation. Further work will involve additional com- 

putation. One project is to simulate the dynamics of the nonlinear Schrödinger equation 

itself, and compare the statistics collected from a typical trajectory with the statistics in 

the ensemble; we hope that this will lead to deeper understanding of the significance of 

the temperature parameter in the Gibbs measure. We are also interested in constructing 

the measure in higher dimensions, where extensive Monte Carlo studies will undoubtedly 

be necessary. 

D. Phase Segregation Dynamics in Particle Systems with Long Range Interactions 

Introduction 

The process of phase segregation through which a system evolves towards equilibrium 

following a quench from a high temperature homogeneous phase into a two phase region of 

its phase diagram has been of continuing interest during the last decades, but many prob- 

lems still remain to be solved. This is particularly so for fluids, when particle, momentum, 

and energy densities are conserved locally; these are currently the focus of both numerical 

studies and experiments. 
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1. Particle Conserving Systems 

a) Exact Results 

During the period of the last grant we rigorously derived a macroscopic equation 

describing the time evolution of the empirical average process, i.e. the local density, for a 

model of interacting particles with one conservation law undergoing phase segregation. 

The particle models are dynamic versions of lattice gases with long range Kac poten- 

tials. By a long range Kac potential, we mean that the interaction energy between two 

particles, say between a particle at x and one at y (x and y are both in d-dimensional 

simple cubic lattice Zd), is given by ^dJ{^{x — y)), where J is a smooth compactly sup- 

ported function (J(r) — J(—r)) and 7 is a positive parameter which is sent to zero. The 

equilibrium states for these models have been investigated thoroughly and have provided 

great mathematical insight into the static aspects of phase transition phenomena. The 

dynamical version of these models, in which each particle jumps at random times from a 

site of the lattice Zd to one of its unoccupied nearest neighbor sites is sometimes called 

local mean field Kawasaki dynamics. The jump times are chosen according to a probability 

distribution which depends on the particle configuration and is reversible with respect to 

the equilibrium Gibbs measure. To find a hydrodynamic scaling limit, we scale also the 

lattice spacing with 7 and the time with 7-2 (this is the so called diffusive limit). We then 

derive a (deterministic) evolution law for the macroscopic density p. 

We believe, but have not yet proven, that our results can be extended to more general 

cases including even plasmas where the Coulomb potential is formally of the Kac type. 

The resulting evolution is given in terms of a second order integrodifferential equation: 

.(P)V ( f) (5) dtp(r,t) = V 

p is the density, <r (a function of p) is the mobility and 

HP) = f   fc(p(r))dr + 1 / / J(r-r') [p(r) - p(r')}2 drdr' (6) 

in which /c is either convex or it has a symmetric double well structure, with minima 

at p~ and p+. The latter will be the relevant case for us: we will call the densities p~ 

and p+ the phases of the system. The dependence on the temperature (of a and /c) is 

suppressed. In probabilistic terms, (5) is a law of large numbers for the empirical averages 

over the particle system. Equation (6) is in a particularly enlightening form: it is the 

gradient flux associated with the classical local mean field free energy functional, with a 

density dependent mobility a. The form of equation allows us to connect the concepts of 

critical temperature, phases, stable, unstable and metastable states of the model, with the 

properties of the solutions of the evolution equation. The next step is to understand the 
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evolution of the boundaries (interfaces) between regions in which the density is close to 

P±- 

b) Motion of Interfaces 

Formal matched asymptotic expansions, in the so called sharp interface limit, of the 

solution of macroscopic evolution equations have been successfully employed to understand 

the interface motion in several models. By sharp interface we mean the limit in which the 

phase domains are very large with respect to the size of the interfacial region: if we denote 

by L the typical size of the domains, we will look for results in the limit L —» oo. The time 

will have to be properly scaled as well, typically as some integer power of L, according to 

the type of initial condition. 

The general picture that we obtain for the interface motion is the following: choose 

an initial condition which takes only metastable or stable values over large domains(of 

typical diameter O(L)), while the interfacial regions are layers of thickness 0(1) and let 

it evolve according to (5). There is, first, the equilibration of the interface which happens 

on a fast time scale (t <C L2). Then, on the time scale t oc L2 the evolution of the density 

in the bulks (that is the interior of the domains) is given by a nondegenerate nonlinear 

diffusion equation with Dirichlet boundary conditions on a free boundary, the interface 

(Stefan problem). Once the density in the bulks is relaxed to the density of the phases, 

the motion of the interface on this time scale stops. A slower evolution can then be seen 

on the time scale t oc L3 and the motion of the interfaces is given by the Mullins-Sekerka 

model; a quasistatic free boundary problem in which the mean curvature of the interface 

plays a fundamental role. 

2. Particle and Momentum Conserving Systems 

a) Model Binary Fluid 

We carried out investigations of spinodal decomposition in a three-dimensional mix- 

ture of two kinds of particles that we label 1 and 2 using a novel microscopic dynamics 

and computational scheme. The particles interact with each other through short range 

interactions modeled here by hard spheres having the same mass m and diameter d. 

Particles of different kinds interact also through a long range repulsive Kac potential, 

V(r) = 73C/"(7r). The equilibrium properties of such a system are well understood, there 

is even a rigorous proof of a phase transition at low temperatures to an immiscible state, 

which in the limit 7 —> 0, is described by mean field theory. When the density n is low 

enough, nd3 <C 1, and the potential sufficiently long ranged, nj~3 >> 1, the free energy of 

the system is well approximated by F = kßT J[ni(r^lnni(r)+n2(r)hin2(r)}df+ J V(\r\ — 

T2\)n\{fi)n2{r2)dvidr2. The 7 —+ 0 critical temperature, which should be an upper bound 

for T7 at 7 > 0, is given by —B
c r\r      .  In this regime the dynamical evolution of the 

2n I U(r)dr 
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system should be well described by two coupled Boltzmann - Vlasov equations: 

df< ±->    dfijL^     9fi TU    t   Mf 1 ,•       19 (7\ -7T- + V •-—;+ — • ^ZT = J[fi, fl + f2\, 1 = 1,2 (7) 
ot or      m    ov 

where fi{r,v,t) are the one-particle distribution functions, Fi(r,t) = — V J V(|f— rr\)nj(ft)drt, 

nj(r/) — J fj(fl,v,t)dv with i,j = l,2,z ^ j, and J[f,g] is the Boltzmann collision oper- 

ator for hard core interactions. Kinetic equations of this type have been proposed, and if 

the system is quenched inside the coexistence region they will describe gas-gas segregation 

into two phases, one rich in particles of type 1 and the other rich in particles of type 

2. (Examples of gas mixtures that have a miscibility gap are helium-hydrogen, helium- 

nitrogen, neon-xenon etc..) We believe that the model contains the essential features of 

phase separation in general binary fluid mixtures. 

b) Computer Simulations with Particle-to-Grid Methods 

To simulate our system we modeled the Boltzmann collisional part using a stochastic 

algorithm due to Bird, known as Direct Simulation Monte Carlo (DSMC), while for the 

Vlasov part we used the particle-to-grid-weighting method, well known in plasma physics. 

In the DSMC method the physical space is divided into cells containing typically tens of 

particles. The main ingredients of this procedure are the alternation of free flow over a 

time interval At and representative collisions among pairs of particles sharing the same 

cell. In the particle-to-grid-weighting algorithm the particle densities are computed on a 

spatial grid through some weighting depending on the particle position, then the Vlasov 

forces are calculated on the same grid. Finally, the forces at the position of each particle 

are interpolated from the forces on the grid. The coupling of these methods, which have 

been extensively used individually, made possible our simulations of phase segregation with 

1.4 x 106 particles, with only modest computational resources: a typical run took about 

32 CPU hours on a 233 MHz Alpha Station. It appears that this method can be extended 

to the study of the effects of phase segregation on inhomogeneous hydrodynamical flows 

of practical importance. 

Since one of our main interests was the late time hydrodynamical regime, a delicate 

balance had to be struck between the size of the system, the range of the potential, the 

temperature and the particle density, making sure that each of the methods is used within 

its range of validity and that their combination remains computer manageable. On the 

one hand the potential must be reasonably long ranged so that the Vlasov description is 

physically appropriate and numerically sound, and on the other hand it must have a range 

much smaller than the size of the system. This restriction made necessary the use of two 

spatial grids: a somewhat coarse one for the collisions and a finer grid for the long range 

potential. It also imposed the use of quadratic spline interpolation for the calculation of 

grid quantities and a ten-point difference scheme for the calculation of the forces. 
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Our results were obtained using a system with 1,382,400 particles in a cube with 

periodic boundary conditions.   We also studied smaller systems to identify unavoidable 
— 3 2 

finite-size effects. The interaction potential used was Gaussian, U(x) = air~2~ e~x , a. > 0, 

but there is no reason to believe that different repulsive potentials would qualitatively 

change the results. All quenches were performed at a total particle density nd3 ~ 0.01 and 

an initial temperature To, TQ/T® = 0.5. The initial conditions for each run were random 

positions for all particles and velocities distributed according to a Maxwelhan of constant 

temperature. (In the DSMC evolution, as in the Boltzmann-Vlasov equations, the hard 

cores only enter in determining the collision cross sections.) The total energy of the system 

was very well conserved by the dynamics. This meant that the kinetic energy and hence 

the temperature increased as the system segregated, but at late times it changed very 

slowly on the time scale of our simulations. The effective number of particles in the range 

of the potential was about 100-500. The results of our simulations are presented in Figures 

1-4. 

E. Microscopic — Shock Profiles :  Exact Solution of a Non — Equilibrium System 

There is much interest, physical and mathematical, in the behavior of models systems 

of particles described macroscopically by a continuous density field satisfying equations of 

hydrodynamic type which produce shocks. In such cases it is clear that the hydrodynamic 

equations do not tell the full story; in fact, because of the discontinuities in the density 

and consequent infinities in the derivatives which enter the equations, shocks correspond 

to non-unique weak solutions of these equations, and, to find the physical solution, the 

equations have to be supplemented by additional conditions or be treated as the limit of 

equations with non-zero viscosity. The microscopic level has of course no room for such 

extra conditions and its study is therefore essential for a complete understanding of the 

behavior of shocks. 

Unfortunately, even molecular-dynamics simulations of shocks in real particle systems 

can only be carried our very partially with the currently available supercomputers, so model 

systems such as the one-dimensional asymmetric simple exclusion process are important. 

In this model, particles on the lattice jump independently at random times with rate 

1 to adjacent sites, choosing the site to their right with probability p, and to their left 

with probability 1 — p, provided the target site is unoccupied. The density profile of this 

system on macroscopic spatial and temporal scales x and t is described for p ^ 1/2 in the 

appropriate hydrodynamic scaling limit by the inviscid Burgers' equation 

^ + (2P-1)^K1-,)|=0. (8) 

This means that there exists a limiting scaling for which the actual random microscopic 

density exactly tracks the solution of the Burgers' equation. 
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This equation can produce shocks; for example, there is a solution of (8) such that 

u(x,t) = u+ for x > x0(t) and u(x,t) = u- for x < x0(t), where u+ > u_ (when p > 1/2) 

and the shock position xa(t) moves with the constant velocity (2p — 1)(1 — u+ — u_). We 

now ask about the corresponding microscopic behavior: can one see an abrupt change at 

that scale or is the jump in densities spread out over very large microscopic distances? 

To analyze the shock microscopically one must first locate it—that is, define precisely 

its position-on the microscopic level. This may be done by introducing a special second- 

class particle into the system, which evolves by a modified dynamical rule: it behaves 

like a regular (first-class) particle when jumping to an empty site but must give way 

to any regular particle that tries to jump on it (by exchanging places with the latter). 

For p > 1/2 this dynamics makes the velocity of the second-class particle decrease with 

density and then gives it a drift towards regions of positive density gradient. This keeps the 

second-class particle near the shock and its position may then conveniently be taken as the 

definition of the (microscopic) shock location. With this definition it has been established 

that shocks are sharp even on the microscopic level; specifically, that the microscopic 

(ensemble-averaged) particle density at site j, as viewed from the second-class particle, 

has a time-invariant distribution which approaches the densities p± = u± at ±oo. 

In our recent work we have obtained the exact microscopic structure of such shocks. 

We obtain our results by first finding the exact stationary state of the system as seen 

from the second class particle. We find that the correlations decay exponentially when 

p+ > p-. In practice, this means that one can see the discontinuity on the scale of a few 

intermolecular distances, something consistent with computer simulations on real particle 

systems and with experiments.   We also find that the "width" of the shock diverges as 

P+ -*P~ 
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Doctor Honoris Causa, Ecole Polytechnique Federale, Lausanne, 1977 
Fellow, American Physical Society, New York Academy of Sciences, American Association 

for the Advancement of Science: Member Phi Beta Kappa 
The A. Cressy Morrison Award in Natural Sciences for 1986, The New York Academy 

of Sciences 
Boltzmann Medal for 1992, IUPAP Commission on Thermodynamics and Statistical Physics 
College of Arts and Sciences Distinguished Alumni Award, Syracuse University, 1993 
Max Planck Research Award, Alexander von Humboldt Foundation, 1993 
Board of Trustees Award for Excellence in Research, Rutgers University, 1993 
Delmar S. Fahrney Medal, The Franklin Institute, 1995 
The 1996 Heinz R. Pagels Human Rights of Scientists Award of New York Academy of Sciences, 
1996 
The Rutgers College Class of 1962 Public Service Award, 1997 

MEMBER OF: 

Institute des Hautes Etudes Scientifiques, Bures-sur-Yvette, France, Scientific Committee 
for Scientific Matters, 1979-82 

Institute for Theoretical Physics, Santa Barbara, California, Advisory Board 1984-87 
International Association of Mathematical Physics, Executive Committee, 1982-87 
American Institute of Physics, Ad Hoc Committee for the Journal of Mathematical Physics, 

1970, 1978, 1984; Committee on Selec- tion of Dannie Heineman Prize, Vice Chair, 1989, 
Chair, 1990 

American Physical Society, Committee on the International Freedom of Scientists, 1984-85 
Committee on Physical Review A, 1991, Chair 
National Academy of Sciences, Research Briefing Panel on Mathe- matics, Office of 

Science and Technology Policy, 1982 
International Sakharov Hearings, 1979 
Lars Onsager Memorial Prize Committee, 1994- 
Miller Research Fellows Advisory Board, University of California, Berkeley, 1984-86 
Open Society Fund, Fellowship Selection Committee, New York, 1982- 
J. van Neumann Computing Center, Board of Governors, 1987-1990 
American Mathematical Society, Committee on Human Rights of Mathematicians, 1988-91, 
Committee on Science Policy, 1990-92 
International League for Human Rights, Member of the Board, 1987-1988 
Association of Engineers and Scientists for New Americans, Joint Advisory Committee/Reference 

Team of the Refugee Scientist Program 
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Evaluation Committee, Physics, Harvard College, 1990-1993 
Evaluation Committee, Math and Phys, Clarkson University, 1986- 
Scientific Reviewing Committee at the Weizmann Institute of Science, 1995 
Self-Study Committee, Department of Phsyics and Astronomy, Lehman College of the 

City University of New York, 1995 

CONFERENCE ORGANIZATIONS: 

Advisory Organizing Committee: 
International Conference on Mathematical Physics, Berlin, 1981; Colorado, 1983; 

Marseille, 1986; Swansea, 1988; Paris, 1994 
International Conference on Thermodynamics and Statistical Mechanics, Edinburgh, 1983; 

Boston, 1986; Rio de Janeiro, 1989; Berlin, 1992; China, 1995, Paris 1998 
Colloquium and Workshop on Random Fields: Rigorous Results in Statistical Physics, 

Esztergon, 1979; Koszeg, 1984 
Conference on Mathematical Problems from the Physics of Fluids, Universita Degli Studi di 

Roma, 1985 
Conference on Statistical Mechanics and Field Theory: Mathematical Aspects, Groningen, 

1985 
Symposium on Statistical Mechanics of Phase Transitions: Mathe- matical and Physical 

Aspects, Trebon, Czechoslovakia, 1986 
International Advisory Committee and Conference Organizer for the Landau Memorial 

Conference on the Frontiers of Physics, 1988 
Models for Non-Classical Reaction Rates, National Institutes of Health, Bethesda, MD, 1991 
International A.D. Sakharov Conference on Physics, Moscow, USSR, 1991, 1996 
Lattice Gas Automata Workshop, Nice, France, 1991 
Workshop on Phase Transitions: Physics, Mathematics, Biology, Prague, Czechoslovakia, 1992 
International Conference on Three Levels, Leuwen, Belgium, 1993 
Statistical Mechanics as a Branch of the Probability Theory, 

in memory of Roland L. Dobrushin, Vienna,, September 1996 
Mathematical Problems in Statistical Mechanics, Marseille, July 1997 
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INVITED CONFERENCE LECTURES (Partial List) 

1991: 
Microscopic Simulations of Complex Hydrodynamic Phenomena, Alghero 
International Symposium on Phase Transitions, Tel Aviv 
Advanced Research Workshop Lattice Gas Automata, Nice 
Physical Origin of Time Asymmetry, Mazagon, Spain 
Models of Non-Classical Reaction Rates, NIH 

1992: 
Symposium on Quantum Nonintegrability, Drexel (May) 
Workshop on the Theory of Phase Transitions, Prague (June) 
The State of Matter, Copenhagen (August) 
IUPAP International Conference on Thermodynbamics and Statistical Mechanics, 

Berlin (August) 
Kinetics of Phase Transitions, Edinburgh (August) 

1993: 
The Statistical Mechanics of Fluids, Oxford (March) 
Dynamics of Complex Systems, Rome, May 17, 1993 
Advances in Dynamical Systems and Quantum Physics, Capri (May) 
Coupled Transport Processes and Phase Transitions, Trondheim (June) 

1994: 
Boltzmann Symposium, Austria (February) 
Boltzmann Symposium, Rome (May) 
Cellular Automata, Aggregation and Growth, U.K. (May/June) 
XIII Sitges Conference, Barcelona (June) 
11th Congress of Mathematical Physics, Paris (July) (Session Organizer) 
Symposium on Classical & Quantum Billiards, Switzerland (July) 
4th Drexel Symposium on Quantum Nonintegrability, Philadelphia (September) 
CAM (The Canadian, American and Mexican Physical Society), 

Cancun, Mexico (September) 
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